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Abstract~In this paper a nonlinear Volterra integral equation is used to characterize a class of nonlinear visco­
elastic materials subject to uniaxial effects. Anumber of unknown parameters appearing in the mathematical
structure of the model is optimally determined such as to minimize a least squares functional of all the experi­
mental data, assumed to be given in terms of relaxation tests performed at various strain levels. The predictive
ability of the model is tested using the experimental data furnished in [10]. The results are finally compared with
those reported by Findley and Lai using a multiple integral model [9J, [IOJ and with the experimental ones.

1. INTRODUCTION

IN A number of recent publications [1] to [6], we have systematically dealt with a number
of modeling and identification problems in the realm of the theory of viscoelastic materials.
In particular, in [5] we have developed a numerical procedure for the identification of
nonlinear materials governed by Volterra integral equations of the form

(1 = g(e)+ { h(e(r))!(t - r) dr,

from general input-output measurements. In this paper we specialize the foregoing results
to study the prediction ability of such a model in the case where the material constants are
to be determined exclusively from experimental data obtained from relaxation tests at
various constant strain levels. In addition to the identification aspects, the numerical
procedures involved in the prediction of the stresses (strains) of the specimen subject to
variable strain (stress) histories are presented and thoroughly discussed. The predictive
ability of the model is tested using the experimental data furnished in [10]. The results
are finally compared with those reported by Findley and Lai [10], using a multiple integral
model and with the experimental ones.

2. SYSTEM IDENTIFICATION

Consider a nonlinear viscoelastic material whose stress-strain relationship is given by
the nonlinear integral Volterra equation

(1 = g(e(t),k 1 ,k2 , ••• )+ {h(e(r),d 1 ,d2 , •••)!(t-r)dr,

where (1 and e are scalar components of the stress and strain respectively, measured on a
test specimen subject to uniaxial tension or compression. The function g(e, k 1 , k 2 , •••)
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(2)

denotes the instantaneous nonlinear elastic response, given in parametric form in terms
of unknown constants k I' k2 , ••. , whereas h(c, dI' d2 , •..) will be in general a nonlinear
function of c accounting for nonlinear viscoelastic effects and given in parametric form in
terms of unknown constants dI' d2 , .... The function f, a relaxation function of the
material, will also be given in parametric form. More precisely, it will be assumed to satisfy
an Nth order differential equation with constant coefficients.

Since our system will be identified by using experiments of the relaxation type,
equation (1), under constant strain e(t) = Cj, i = 1,2, ... , M, reduces to

(Jj = g(ci,k l ,k2 ,···)+h(Ci,d l ,d2 ,···)1f (TldT,

a form from which we shall proceed for identification purposes. The problem is now to
optimally determine the constants k I' k2 , •.. , dI' d2 , .•• , and the parameters that char­
acterize the kernel f(t) such as to minimize a convenient norm involving the experimental
data given in relaxation form. To this end we shall divide the identification problem in
two parts. First we shall determine a convenient kernel f(t) using differential approx­
imation. This is done in the next section. Then we shall proceed to optimally determine
the remaining unknowns using a Gauss-Newton iterative method.

3. DIFFERENTIAL APPROXIMATION OF THE KERNEL

We shall assume that the relaxation function f(t) appearing in equation (2) satisfies the
differential equation of order N given by

(3)

where ao, ai' ... , aN _ I are coefficients to be determined.
We additionally assume that the numerical data of relaxation furnished by the ex­

periments has been conveniently fitted with analytical functions of the type

(4)

where (JiO, (Jit and mil' m i2 , . •• , are constants to be determined for each experiment i, by
standard fitting procedures.

Comparing equations (2) and (4), we wish to optimally determine ao, a l , ... , aN-I in
equation (3) such as f~ f(T) dT approximates functions Fi(t, mil' m i2 , •..) in some sense.
This is of course equivalent to make the approximation

(5)

where

(6)

One way to treat this problem is by differential approximation [7]. Using this method
we required that the functional

(7)
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be a minimum with respect to all possible choices of the constants ao, a l , ... , aN-I' The
minimization of this quadratic functional leads to the system of N simultaneous linear
equations

(8)

(10)

from which the unknown coefficients ao, at , ... , aN _ I' can be computed. Once the co­
efficients have been determined, we use them to solve the characteristic equation

ao+aIR+a2R2+ ... +aN_IRN-I+RN 0 (9)

and obtain for f(t) the representation in terms of exponentials
N

f(t) = L Cj eRl
j= I

Subsequently, we can express O';(t) given by equation (2) in the form

0'; = g(Cj, k 1 , k2 ,·· .)+h(c;. d 1 , d2 ,···)Jl ~~(I-eR/)

or by defining

(11)

C'!' = Cj

JR.'
J

0'; will be given by

(12)

N

0'; = g(C;,kl,k2,· ..)+h(Ci,dl,d2'·") L CjHP)·
j= 1

(13)

It should be noted, that the previous derivation has been done under the assumption
that the roots R j of the characteristic equation are real and distinct. Multiple and complex
roots can be equally handled with obvious modifications.

4. OPTIMIZATION

Now, the identification of our system can be formulated as the following optimization
problem: given M pairs of independent experimental functions O';(t) and Bj• find the con­
stants k l , k 2 , • .. , d l , d2 , • .. , CT, C!, . .. , C~, such that the functional

M fti
$(k 1,k2 ,···,dl ,d2 , .. ·,q,C!, ...) = ;~111; 0 [O't(t)-O'j(tWdt

is minimized, where 11; are suitable weighting factors,
N

O't(t) = g(Bi,k l ,k2, .. ·)+h(Bi,d1 ,d2,· ..) L CjHit),
j= I

(14)

(15)

and O';(t) is given by equation (4).
The upper limit t j of the integral in equation (14) denotes the duration of the ith

experiment.
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In order to simplify the notation, let us define

Ej(t) = (}i(t) - O'j(t).

Then equation (14) may be written as follows

(16)

(18)

(17)
M ft.

tff(k I ,k2,···,dl ,d2,···,q,q,···) =L Ili Ef(t)dt.
,= 1 °

The minimization of the expression (17) leads to the system ofN nonlinear simultaneous
equations

N f ti oE.(t)L Ili E;(t)-c:l-'-dt = O,a = kl,k2,···,dl,d2,···,q,q,···,C~.
i = 1 ° va

5. SOLUTION METHOD

In order to solve the nonlinear optimization problem formulated in the last section,
we shall use an extension of the Gauss-Newton iterative scheme [8J as employed in [5].
To this end we expand the function E;(t) up to linear terms with respect to the unknown
constants, i.e.

NK agO N N ND aho
E;(t) ~ E?(t)+ L a;:-tikm + hO .L HJ(t)JiCj + .L C*J HJ(t) L a;[Jidn (19)

m=1 m )=1 )=1 n=1 n

where the superscript zero indicates that the function is evaluated at the currently known
values of the unknown quantities, and where

k~ = kZ + Jikm ,

d~ = d~ + Jidn ,

C*I = C,!,o+JiC'!'
) ) ) ,

m = 1,2, ,NK

n = 1,2, ,ND

j = 1,2, , N

(20)

are the improved values of the corresponding quantities.
By substitution of Ej(t) given by equation (19) into equation (17), our original opti­

mization problem reduces to the solution of a least squares problem at each iteration,
i.e., to the solution of

M NK ftk agO agO M N * f tk ° oogO
k~1 Ilk j~1 Jikj ° ak

j
aki dt +k~1 Ilk j~1 JiCj ° h Hj ak j dt

M ND ftk [ N JahO agO
+kE Ilk j~1 Jidj ° I~I CtOH? od

j
ak j dt

I Ilk f
tk

[O'k-gO- hO I qOH?]a
gO

dt, i = 1,2, ... ,NK,
k= 1 ° 1= 1 oki

M N K ftk agO M N ftk
k~1 Ilk j~1 Jik j ° ak

j
hOH? dt+ ~I Ilk j~1 JiCj ° hOHJhOH? dt

+ k~1 Ilk j~ Jidj {k Ltl qOH?]~~: hOH? dt (21)

I Ilkft
k

[O'k-gO- hO I qOH?]hOH?dt, i = 1,2, ... ,N,
k= 1 ° 1= 1
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M

i = 1,2, ... ,ND

(21) cant.

a linear system of equations in terms of the N K + N +N D quantItIes ti.ki , ti.Cj, ti.dk ,

i = 1, ... , N K, j = 1, ... , Nand k = 1, ... , N D. After this system has been solved, we
compute the new estimates of the parameters by using equations (20) and the procedure is
continued until convergence is reached. This process is quadratically convergent near the
solution. Obviously, the first step of the process requires an a priori estimate ofthe unknown
parameters.

6. PREDICTION: DIRECT AND INVERSE PROBLEM

(22)

In the last sections we have optimally determined a number of constants that uniquely
define the model equation given by (1). We wish to show now how to solve equation (1)
in the sense of

(a) given a certain strain history e, find the associated stress history a.
(b) given a certain stress history a, find the strain e.
We can see that problem (b) contains as a special case, the determination of the creep

function. We shall specifically refer to that aspect of the problem in Sections 7 and 8,
where numerical examples will be presented.

Problem (a) is the simplest of the two. For a given input e, we can readily compute (f

by direct substitution in the model equation (1). However, we observe that this procedure
involves the computation of a convolution, a very inefficient operation insofar as time and
storage is concerned. Fortunately we can bypass this difficulty by reducing the model
equation (1) to a system of nonlinear ordinary differential equations subject to initial
conditions. To this end, we substitute f given by equation (10) in equation (1) obtaining

N

a = g(e(t))+ I CiZi(t),
i= 1

(24)i = 1, ... ,N,

where Zi(t), i = 1,2, ... , N, are functions defined by

Zi(t) = eR,r {h(e(r)) e-R,r dr. (23)

By differentiating equation (23) with respect to t, we find that Zi satisfies the following
system of differential equations

dZ·
(if-R;Z; = h(e(r)),

subject to initial conditions, a very convenient device insofar as economy in computer
storage is concerned.
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In g and h appearing in equations (22) and (24) we have omitted the explicit dependence
of these functions with the material constants, in an effort to simplify the notation.

Clearly, for a given e we can integrate equations (24) and obtain the Z;'s that sub­
stituted in equation (22) directly furnishes the required value of (J, thus disposing of
problem (a).

The solution of problem (b), that along classical lines is considerably more complicated
than problem (a), in the present formulation requires only very little additional effort. In
fact, assuming that function g(e) appearing in equation (22) possesses an inverse i.e.,

g(e) = q +-+ e = G(q)

then, we can invert equation (22) in the sense of

e = G( (J- it
j

C;Z;(t»),

a function that substituted in equation (24) yields

(25)

(26)

i = 1, ... , N, (27)

a system of nonlinear differential equations of the first order in Zj, subject to initial con­
ditions. Note that e follows from equation (26).

The success of this method, i.e., the inversion of nonlinear integral equations of the
Volterra type by reduction to differential systems is mainly due to the expansion of the
kernel in exponential functions and in the possibility of inverting the nonlinear function
g(e). If this inversion cannot be analytically performed, i.e. if G in equation (25) does not
afford an analytical expression, we can always perform the inversion in a numerical fashion.

We observe that the solution of problems (a) and (b) require only to integrate systems
of first order, ordinary differential equations subject to initial conditions, a task for which
many standard algorithms and computer routines are available. But what it is important
to remark is that this process requires only the storage of the computer program and the
quantities currently being computed, an insignificant number in comparison with the
storage of the whole functions if a quadrature approach to the convolutions is used.

7. RELAXATION OF SOLID POLYURETHANE

In order to make a specific application of the present method of identification and
prediction, we present a numerical example utilizing experimental data on solid poly­
urethane furnished by W. N. Findley and J. S. Lai in [9J and [10]. To this end we consider
that functions g and h appearing in the model equation (1) are given by

g(e, k j , k1 ) = kje+k1e1, (28)

h(e, d) = e edt. (29)

The choice of functions g and h given by equations (28) and (29) is guided by a quali­
tative knowledge on the instantaneous and time-dependent behavior of the material.
Although there is no fixed rule to decide among a large number of functions that might
satisfy the required qualitative conditions, we are generally inclined to pick functions
exhibiting a simple structure and a relatively low number of constants to determine.



Modeling, identification and prediction of a class of nonlinear viscoelastic materials (I) 811

Under these assumptions equation (2) reduces to

O"j(t) = k 1Gj+k 2Gf +Gj edt, f~ f(r) dr. (30)

The problem consists now in the determination of k l , k2 , d and function f using the
procedure described in Sections 3, 4 and 5, such as to satisfy the least squares criterion
given by equation (14), for appropriate given data.

In reference [10] it has been shown that the relaxation stress, i.e., the stress obtained
under constant strain, for solid polyurethane in tension, can be given as functions of
time t of the following form

i = 1,2,3,4, (31 )

where i denotes different tests at different constant strains Gj, i = 1,2,3,4. The values of
the constants appearing in equation (31), as reported in reference [10], are given below in
Table 1.

TABLE I

0, G io air m[10- 3 in/in] [ksi] [ksijhrm
]

I 4·333 2·28 0·206 0·125
2 6·500 3·38 0·340 0·125
3 8·666 4-45 0·518 0·125
4 10·833 5·50 0·701 0·125

We observe that the exponent m in equation (31) is the same for each experiment. This
is not a requirement of our method since all we need is an analytical expression for ii j in
terms of t, regardless the nature of this function. As a matter of fact, better agreement
between experiments and functions (31) could be obtained by making m to be i-dependent.
We have used equations (31) however in an attempt to make comparisons with the results
reported in Ref. [10].

With this experimental information we proceed first to determine the coefficients ai'
i = 0, 1, ... , N - 1 of the differential equation

aof+at/(I)+ ... +aN- t/(N-l)+ f(N) = 0, (32)

using the method outlined in Section 3.
By comparing equation (31) with (4) we conclude that

(33)

(34)j = 0, 1, ... , N -1.

We see that in fact Fj is independent of i, as previously noted. The values of vF) needed
in equation (8) have been computed using equations (33) and (6), i.e.,

di + 1p.
(j) - I _ ( 1) ( .) m- 1- iVj-dti+l--mm- ... m-Jt ,

The integration of equation (8) has been performed using t 1 = 0·05 and t 2 = 2·0, the
duration of the experiments. The singularity of ta for (J. < 0, prevents the use of t 1 = 0.
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Once the coefficients ai' i = 0, 1, ... , N -1, have been computed, we proceed to find
the N roots of the characteristic equation

The results of these computations are presented in Table 2 for N = 2, 3, ... , 9.
Using the roots of the characteristic equation (35) we can write I(t) in the form

N

I(t) = L Cj eRj
',

j= I

that substituted in equation (30) yields
N

a;(t) = kICi+k2C? -Cj edt; L Cj(l-eRj
'),

j= 1

where

(35)

(36)

(37)

C* = Cj
j .

Rj

The determination of the additional unknown constants of the model can be now
performed using the method outlined in Section 5.

We have used simultaneously the four experiments ai' i = 1,2,3,4, given in Table 1,
to optimally determine the unknown constants k1 , k2 , d, CT, Ci, ... , C~. In Table 3 we
present the results of this optimization for N = 2,3, ... ,9. In all our numerical work we
have assumed fJ.k = 1, k = 1 to 5.

Additional numerical experimentation has been made using the model

g(c,k l ,k2,k3) kjc+k2C2+k3C3, (38)

for the instantaneous response. Since the consequences of this change are reflected at the
fourth digit of the predicted stress, we have retained only the model with k 1 and k 2 for our
subsequent purposes.

Now, we are in a position to test the predictive ability of our modeL To this end we have
plotted a i given by equation (37) using the constants previously determined, for various
values of N. These results may be compared with the experimental ones and with those
given in Ref. [10], in Fig. 1. We observe that for N 4 the model predicts very
accurately the experimental values. In fact, the difference between experimental and pre­
dicted values is hardly noticeable in the figure. The predicted values for a lower order
model (N 2) are also shown in the same figure. Although they do not match exactly the
experimental curves, are accurate enough for almost any practical purpose.

The mean square errors, calculated with L:= 1 (afk
RED ()"~XPf/R are given in Table 4

for each experiment and different values of N. It can be seen that for N = 4 or 5, the mean
square error reaches a minimum value.

8. CREEP OF SOLID POLYURETHANE

Using the model constants optimally determined in the previous section, we can now
proceed to use the model for prediction purposes in a number of ways. In this section we
show the results of inverting the integral model in order to determine the creep function
of the material.



TABLE 2

N
Rj :s:

j [I/hr] 2 3 4 5 6 7 8 9 0
0-

"-
I R, -3.Q219 -1·6834 -1-1298 -0·84360 -0·67342 -0·56196 -048353 -042422 o·
2 R, -33·576 -16996 -10539 -7·3258 -54888 -4·3361 -3-5618 -3·0051 '!"

0:3 R, -67.Q34 -39·261 -26·378 -19·186 -14·736 -11·780 -9·6863 R
c

4 R, -10440 -66·735 -47419 -35·806 -28·200 -22·868 g;
5 R, -144·15 -97·728 -72-308 -56·220 -45·152 n

6 R, -185·53 -131·26 - 1()().12 -79·544 !'?o·
7 R, -228·12 -166·70 -130·07 c

8 R, -271·62 - 203-45 "8-9 R, - 315·63

""R0-

5:
o'
c
0
~

TABLE 3 "a
"~N ~

0
Cj ~

C
j [10' ks;) 2 3 4 5 6 7 8 9 0

1 q lH8412 0·16456 0·15536 0·15525 0·15639 0·15912 016113 0·16390 t
2 Cl 0·034110 0031970 0·061935 0063486 0·067844 0·064797 0064472 0·061579

~.3 q 0.Q82712 0·018956 0.Q42433 0·019912 0·035497 0030412 0·040186 0

4 q 0·066413 -0012445 0.Q72170 0.Q10864 0050446 0010911 0
f}

5 Cl 0·079161 -0·074978 0·083400 -0·063083 0.Q78251 g.6 q 0·10757 -0·11223 0·19977 -0·15486
7 q 0·12388 -0·23245 033662 3

"8 q 0·16901 -0·35337 "9 q 0·20868 ~.

~

k,[1O' ksi] 5-2165 5·2583 5·2652 5·2750 5·2829 5·2877 5·2922 5·2952 ;:;

k,[IO' ksi] -0·45229 -043590 -0·43336 -0·43009 -042753 -042599 -0·42455 -042361

d[lO'] 0·37143 0·35819 0·35608 035260 0·34982 0·34814 0·34658 0·34555
~

.~
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Since in the present case function g appearing in equation (25) is given by

g(e) = k Je+k 2e2 = q, (39)

we can readily invert obtaining

t = G(q) = [-k 1 ±.J(kf+4qk2 )]f2k2 (40)

where only the plus sign will be retained. Therefore, recalling equation (29), equation (27)
reduces to

i=1, ... ,N(41)

where G appearing in equation (41) is given by equation (40). Clearly e is determined by
means of

e = G(a-.i Cizl (42)
I~ I

TABLE 4

Mean square error [10- S]
f.;

[10- 3 in/in) N "= 2 N "= 3 N = 4 N = 5 N = 6 N=7 N = 8 N "= 9

I 4·333 3·02 0·72 0·47 0·55 0·66 0·74 0·82 0·87
2 6·500 11·39 4·67 3·91 4·00 4·18 4·32 4·46 4·56
3 8·666 26·72 10·99 9·14 9·26 9·62 9·89 10·18 10·38
4 10·833 38·59 6·20 2·24 1·60 1·52 1·55 1·1)2 1·70
Total mean
square error 79·72 22·58 15·76 15-41 15·98 16·50 17·08 17·51
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Using

0"1 = 2·0 ksi

0"2 = 3·0 ksi

0"3 = 4·0 ksi

0"4 = 5·0 ksi

we have integrated the system of equations (41) and obtained the corresponding creep
strains Em, i = 1, 2, 3, 4, by means of equation (42). These results have been plotted in
Fig. 2 and compared with those experimental values for the creep strain furnished in
Ref. [9]. We must note that the agreement of the theoretical and experimental values of
the creep strains obtained using the model equation (1), are of the same order of magnitude
that the agreement between theoretical and experimental values of the relaxation stresses
reported by J. S. Lai and W. H. Findley in Ref. [9] using their model with multiple integrals.

------

-- experiment
- - - prediction

N-4_________ _--
~----

-----N- 4 - -----,

,/ -- 0"4 -5'Ok,1
/'

/

11·4

II· 2
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"- 8·9
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8·7

i::
..
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8'1e
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U

6'1

5'94.36 r
4'1 ------~~--
3'9 Nj4 I (I ~2'OiSI I

o 0·2 0'4 0·6 0·8 1·0

Time. hr

FIG. 2.

9. PREDICTION FOR A GIVEN STRAIN

We turn now to a more general prediction problem and that is: we wish to predict 0"

for any arbitrary given strain history E(t). To this end we integrate the system of equations
(22H24) and determine 0" using equation (22). In order to check the accuracy of the model
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we consider the following strain inputs

£1 = [4·333H(t)+4·333H(t-2)-4·333H(t-3)] X 10- 3 in/in

1:: 2 = [lO·S33H(t)-4·333H(t-2)] X 10- 3 in/in

where H(t-t j ) is the Heaviside unit function, for which we possess the experimental
stresses given in Ref. [10]. The predicted and experimental stresses are shown in Figs. 3
and 4. In the same figures we report the results obtained with the model of multiple integrals
given in [10].

4·2

4'1

0;

'" 4·0 ....:...
39

..
i: c

0D
b 2'2 N-2 ~..
II.. 2·1..
f
+-
If)

Time. hr
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The experimental values for the first two hours were plotted using the formula given
in [10], while those values for t > 2 h have been directly measured and plotted from the
figure appearing in the same reference.

The model for N = 7 reaches the best agreement with the experimental values. For
N > 7, the improvement is not appreciable. In fact, the plotted values for N = 8 and
N = 9 are indistinguishable from those corresponding to N = 7, in Figs. 3 and 4.

10. PREDICTION FOR A GIVEN STRESS

If we wish to predict f: given a, we can proceed as indicated in Section 6. In fact, for a
given a we integrate the initial value problem given by equations (26H27) and determine
f: by means of equation (26). Unfortunately we have no experimental data to check the
model under these conditions. In order to show the application of the present procedure
we consider

in equation (1) and obtain

f:(t) = t (43)

N C.
a(t) = k t+k t2 +edt '" J [(d-R.)t+e(R J -dlt-l]. (44)

1 2 j7:1 (d-R/ J

Now, using a given by equation (44) we integrated equations (26) and (27) and obtained
values of f: given by equation (26) that coincided with f: = t given by equation (43) in more
than eight digits, establishing the high accuracy and stability of the method.

CONCLUDING REMARKS

A method to optimally determine the material constants of nonlinear viscoelastic
materials characterized by equations of the type (1), using exclusively relaxation tests at
various strain levels, has been presented. Extensive numerical experimentation has shown
the accuracy and stability of the method. The question of the predictive ability of the
model under variable stresses or strains has been examined using the experimental data
given in [9], [10]. The results using the simple model (1) are very satisfactory and never
inferior to those obtained by Findley and Lai using a multiple integral representation. It
is expected that consideration of more general strain histories in the identification pro­
cedure, instead of the rather limited relaxation tests used here, will appreciably improve
the overall predictive ability of model (I). Results of this type will be presented in a forth­
coming publication.
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AOCTpaKT-B pa60Te HCnOJIh3yeTcli HeJIHHei'iHoe HHTerpaJIhHOe ypaBHeHHe BOJIhTepphl AJIli H306paJKeHlI1i
KJIaCCa HeJIHHeiIHhIx, B1I3KoynpyrHx MaTepHaJIOB, nOABepJKeHHhIX AeilcTB1l1O 0AHOOCHhIX 3<!J<!JeKToB.
OnpeAeJIlieTCll, OnTHMaJIhHO, HeKOTopoe '1HCJIO HeH3BeCTHhIX napaMeTpOB, KOTophIe nOllBJIlilOTCli B
MaTeMaTH'IecKoH cTpyKType MOAeJIH, B I..\eJIhlO CBeAeHHlI K MHHHMyMy <!JYHKI..\1I0HaJIa HaiiMeHhlllHx KBaA­
paTOB, H3 BCex 3KcnepHMeHTaJIhHhIX ,L\aHHhIX, npHo6perall, 'ITO OHII nOJIy'leHhI onhITaMH peJIlIKcaI..\HH,
BhInOJIHeHHhIMH AJIJI pa3HhIX YPOBHeii Ae<!JopMaI..\HH. TIpoBepJleTCli npeACKa3aHHali cnoc06HOCTh MOAeJIII,
nOJIb3YllCh JKCnep"MeHTaJIhHhIMII AaHHhIMH, npeACTaBJIeHHhIMH B (10). B 3aKJIIO'IeHHII, cpaBHIIBalOTCli
pe3YJIbTaThI C TaKIIMII JKe, npeAJIOJKeHHhIMII lI>lIHMeeM II JIlIH, KOTophIe nOJIh30BaJIIICh MHorOKpaTHoi!
IIHTerpaJIhHoi! MOAeJIhlO (9), (10) HC pe3YJIhTaTaMII 113 JKCnepIlMeHTOB.


